Towards improved maize with

resistance to Fusarium verticillioides

The Safemaize-project results & future possibilities

The Safemaize-project

Genetic improvement of maize to enhance food safety by introducing resistance to *Fusarium verticillioides*

EU-INCO Project January 2001 - June 2004

- Maize is the single most important staple food in countries of the Southern African **Development Community**
- Often, maize produced in SADC countries such as Zambia, Zimbabwe and South Africa, contains too high toxin levels due to infection with *F. verticillioides*

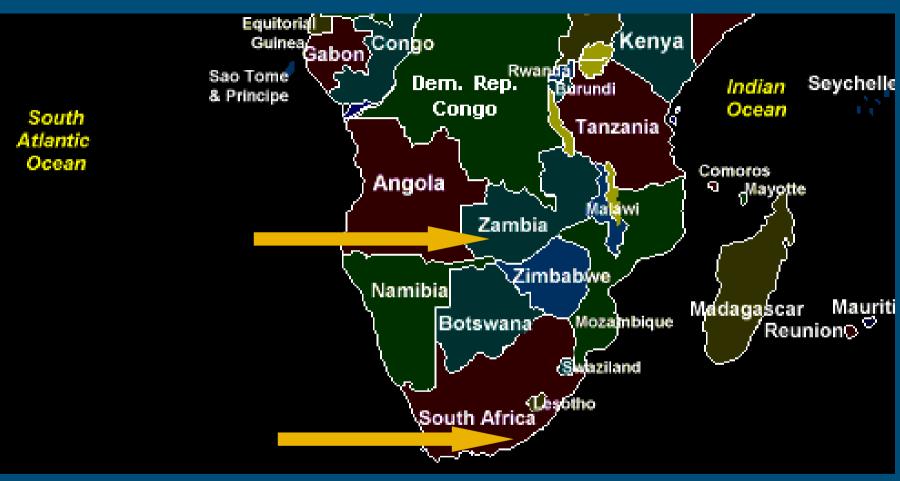
The Safemaize Project Partners

University of Pretoria (co-ordinator)
CSIR, Pretoria
ARC-Roodeplaat, Pretoria
University of Zambia
University of Rome

Maize breeding, Bergamo

PRI

General aims of the Safemaize project


 To characterize *Fusarium verticillioides* isolates from Africa.

- To develop screening methods to evaluate maize genotypes for resistance to the fungus.
- To produce transgenic maize with stable inheritance of selected plant anti-fungal genes, and evaluate resistance in the field.

Southern Africa: isolates collection

Fusarium verticillioides isolates from Africa

Collection of *Fusarium* isolates
 60 isolates from Zambia
 23 isolates from MRC (mainly from Transkei)
 Characterisation

 species specific primers (Waalwijk)
 AFLP

Species specific primers

Species specific primers

Origin	n	Fvert	Fsub	Fprol
UNZA	58	43	1	1
MRC	23	22		

Fvert=F. verticillioides, Fsub=F. subglutinans, Fprol=F. proliferatum

Acknowledgements: C. Waalwijk (PRI), A. Logrieco & G. Mulè (ITEM)

Species specific primers Fumonisin production

Origin	n	Fvert	Fsub	Fprol
UNZA	43	43		
	13			
	2		1	1
MRC	23	22		

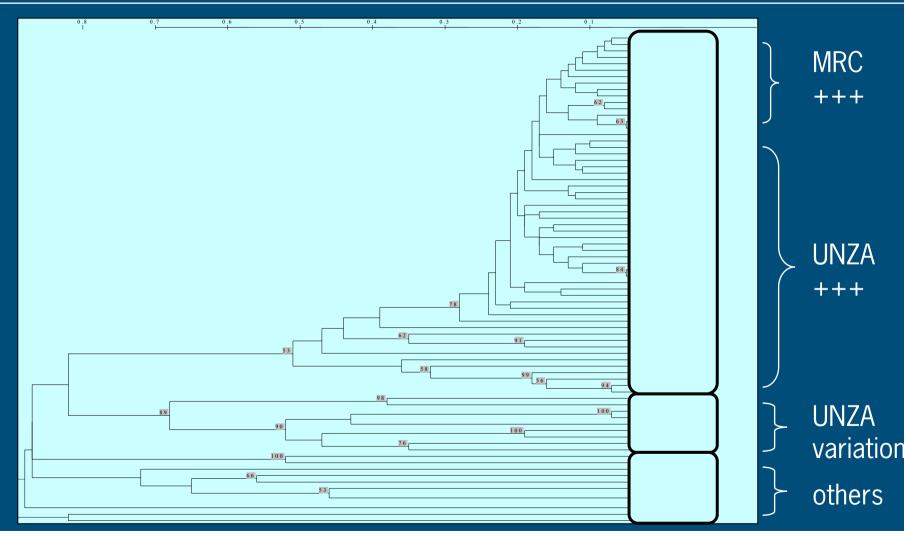
+++	++-	-++	-+-	+	
32	1	4	5*		1
1	1	1			10*
				2	
22					1

Fvert=F. verticillioides, Fsub=F. subglutinans, Fprol=F. proliferatum,

Fum prod=fumonisin producer (FUMF/R, VERTF-1/2, PKS-exon5F6R)

* F. longipes, F. equiseti, F. graminearum, unknown, ** F. sambucinum, F. subglutinans

Ackn: C. Waalwijk (PRI), A. Logrieco & G. Mulè (ITEM) , J. Rheeder (MRC)



UPGMA tree

Nei and Li distance

Bootstrap values above 50%

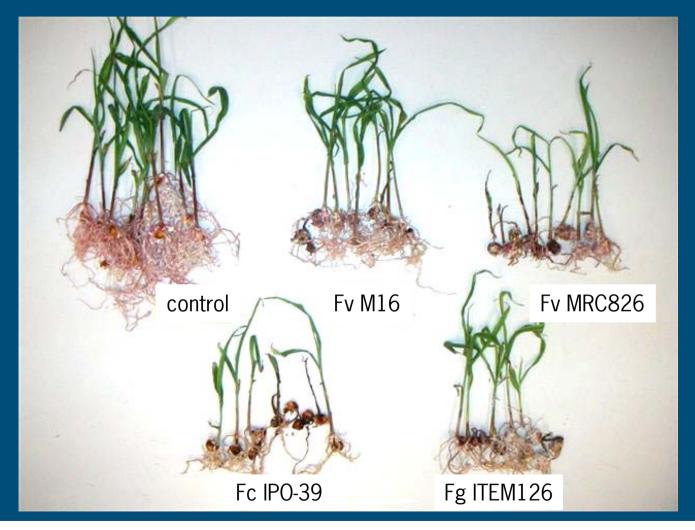
Screening methods

Greenhouse/in vitro test in the Netherlands
Field test in Zambia
Aims:

to screen germplasm for resistance

to screen transgenic maize

Greenhouse test in the Netherlands



Seedling assay: aggressiveness

Field experiment in Zambia

Carried out at the Golden Valley Research Trust
 Maize growing season Nov- Anril

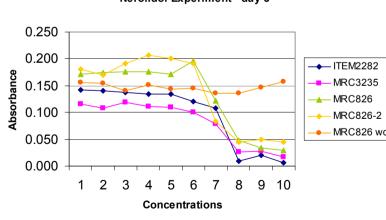
- 2001/2002 very dry
- 2002/2003 good
- 2003/2004 good

Field test in Zambia

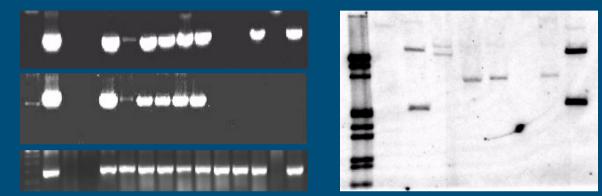
Silk channel inoculation method

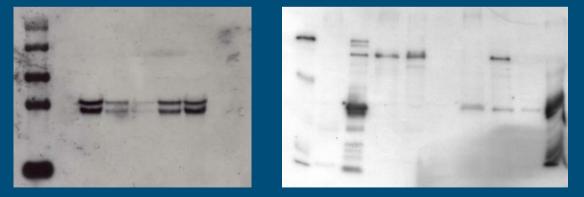
Field test in Zambia 203/2004

		Blotter	PDA
CO255	Netherlands	7.5	10.0
LO 1096	Italy	15.0	15.0
6705-60	Mexico	10.0	15.0
A722-2	Zimbabwe	12.5	17.5
1725-29	Mexico	15.0	25.0
LO1010	Italy	11.7	20.0
A722-4	Zimbabwe	20.0	23.3
6705-56	Mexico	16.7	23.3
PAN 6363	Zambia	13.3	26.7
MRI 455	Zambia	20.0	30.0
MRI 624	Zambia	16.7	33.3
LO1124	Italy	30.0	33.3
F113	Netherlands	21.7	35.0
GV 412	Zambia	20.0	36.7
MRI 514	Zambia	20.0	36.7
MM 502	Zambia	16.7	40.0
MRI 734	Zambia	20.0	43.3



Genes available for transformation

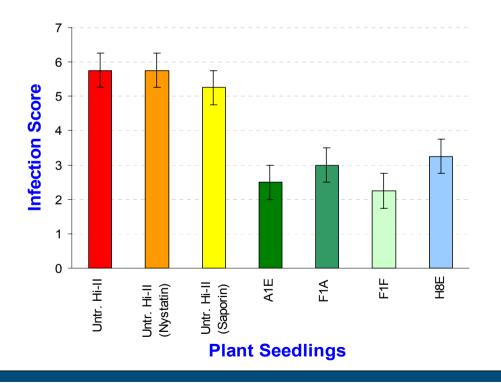

Pvpgip2 gene (polygalacturonase inhibitor gene)
 maize *b-32* gene (ribosome inhibiting protein)
 chitinase gene
 terpene synthase genes
 M. Jongsma PRI



Plant transformation: B32 and bean Pgip2

Transgenes are inserted into maize genome: PCR, Southern blot

Transgenes are expressed: Northern blot, Western blot




Plant transformation: achieved

Transgenic maize shows fungal resistance: laboratory test

Fungal Infection Score of Germinating seeds

Plant transformation: achieved

 Putative T0 transgenics in pots under greenhouse conditions
 [plants are dwarfed due to tissue culture stress]

Plant transformation: achieved

T1 plants in greenhouse

T3 plants in larger greenhouse, 3 m old

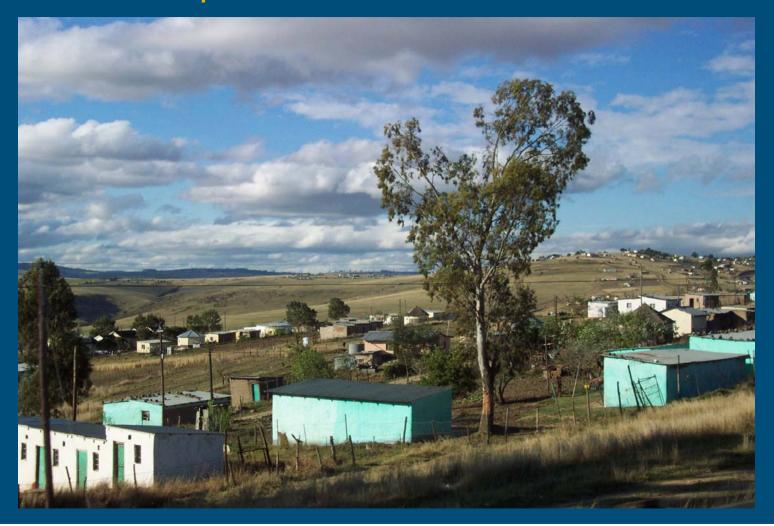
Field Experiment 2003/2004

 GMO Field experiment has been carried out in South Africa instead of Zambia, because it is not allowed to grow GMO maize in Zambia
 Results: look promissing, wait for plating results

Safemaize project training

Guest workers

- from UNZA to PRI
- from University of Pretoria & ARC to University of Rome
- Training included
 - involvement in plant pathological aspects
 - molecular biology


Safemaize conclusions

Collection of Fusarium isolates Screening assays have been developed Variation in resistance levels is present > breeding! GMO-plants with additional plant defense genes have been obtained Lab-assays show improved levels of resistance Training

How to improve the situation?

Further research

Plant GMO/non GMO resistance genes selectable markers cultural measures Fungus and toxin infection process isolates/species aggressiveness mixtures of toxins

Medical research influence of other food types relationship between diet and health toxin mixtures Social impact

awareness of toxins acceptance new varieties and other food

